Impuls
Zentraler elastischer Stoβ
$$\sum^{2}_{n=1}p =p_{1}+p_{2}=m_{1}\cdot v_{1}+m_{2}\cdot v_{2}$$
$$\sum^{2}_{n=1}p^{\prime }=p^{\prime }_{1}+p^{\prime }_{2}=m_{1}\cdot v^{\prime }_{1}+m_{2}\cdot v^{\prime }_{2}$$
$$\sum^{2}_{n=1} E_{kin}=E_{kin_{1}}+E_{kin_{2}}=\frac{1}{2} \cdot m_{1}\cdot v^{2}_{1}+\frac{1}{2} \cdot m_{2}\cdot v^{2}_{2}$$
$$\sum^{2}_{n=1} E^{\prime }_{kin}=E^{\prime }_{kin_{1}}+E^{\prime }_{kin_{2}}=\frac{1}{2} \cdot m_{1}\cdot v^{2^{\prime }}_{1}+\frac{1}{2} \cdot m_{2}\cdot v^{2^{\prime }}_{2} $$
$$\sum \overrightarrow{p} =\sum \overrightarrow{p^{\prime }} $$
$$\sum E_{mech}=\sum E^{\prime }_{mech}$$
Zentraler unelastischer Stoβ
$$\sum^{2}_{n=1}p =p_{1}+p_{2}=m_{1}\cdot v_{1}+m_{2}\cdot v_{2}$$
$$\sum^{2}_{n=1} p^{\prime }=p^{\prime }_{1}+p^{\prime }_{2}=\left( m_{1}m_{2}\right) \cdot v^{\prime }$$
$$\sum^{2}_{n=1} E_{mech}=E_{kin_{1}}+E_{kin_{2}}=\frac{1}{2} m_{1}v^{2}_{1}+\frac{1}{2} m_{2}v^{2}_{2}$$
$$\sum^{2}_{n=1} E^{\prime }_{mech}=\frac{1}{2} \left( m_{1}m_{2}\right) \cdot v^{2^{\prime }}$$
$$\sum \overrightarrow{p} =\sum \overrightarrow{p^{\prime }} $$
$$\sum E_{mech}>\sum E^{\prime }_{mech}$$
Spezielle Formel
$$\overrightarrow{p} =\overrightarrow{p^{\prime }} $$
$$\Longleftrightarrow m_{1}\overrightarrow{v_{1}} +m_{2}\overrightarrow{v_{2}} = \left( m_{1}+m_{2}\right) \overrightarrow{v^{\prime }} $$
$$\overrightarrow{v^{\prime }} =\frac{m_{1}\overrightarrow{v_{1}} +m_{2}\overrightarrow{v_{2}} }{m_{1}+m_{2}} $$
Impulserhaltungssatz
Im abgeschlossenen System
$$\Sigma \overrightarrow{p} =\Sigma \overrightarrow{p^{\prime }} $$