Derivation

Tableau Fonctions-Derivées

$$f\left( x\right)$$ $$D_{f}$$ $$f^{\prime }\left( x\right)$$ $$D_{f^{\prime }}$$
$$k\ (constante)$$ $$\mathbb{R}$$ $$0$$ $$\mathbb{R}$$
$$x$$ $$\mathbb{R}$$ $$1$$ $$\mathbb{R}$$
$$ax+b$$ $$\mathbb{R}$$ $$a$$ $$\mathbb{R}$$
$$x^{2}$$ $$\mathbb{R}$$ $$2x$$ $$\mathbb{R}$$
$$\frac{1}{x}$$ $$\mathbb{R}^{\ast}$$ $$-\frac{1}{x^{2}} $$ $$\mathbb{R}^{\ast}$$
$$\sqrt{x} $$ $$\mathbb{R}_{+}$$ $$\frac{1}{2\sqrt{x} } $$ $$\mathbb{R}^{\ast }_{+}$$
$$x^{n}\ avec\ n\in \mathbb{N}\ et\ n>1$$ $$\mathbb{R}$$ $$nx^{x-1}$$ $$\mathbb{R}$$
$$\sin \left( x\right)$$ $$\mathbb{R}$$ $$\cos \left( x\right)$$ $$\mathbb{R}$$
$$\cos \left( x\right)$$ $$\mathbb{R}$$ $$-\sin \left( x\right)$$ $$\mathbb{R}$$
$$-\sin \left( x\right)$$ $$\mathbb{R}$$ $$-\cos \left( x\right)$$ $$\mathbb{R}$$
$$-\cos \left( x\right)$$ $$\mathbb{R}$$ $$\sin \left( x\right)$$ $$\mathbb{R}$$
$$\tan \left( x\right)$$ $$\mathbb{R}\diagdown \left( \frac{π }{2} \ mod\ 2π \right) $$ $$\frac{1}{\cos^{2} \left( x\right) } =1+\tan^{2} \left( x\right) $$ $$\mathbb{R}\diagdown \left( \frac{π }{2} \ mod\ 2π \right) $$
$$u\left( x\right) +v\left( x\right) $$ $$D_{u}\cap D_{v}$$ $$u^{\prime }\left( x\right) +v^{\prime }\left( x\right) $$ $$D_{u^{\prime }}\cap D_{v^{\prime }}$$
$$u\left( x\right) -v\left( x\right) $$ $$D_{u}\cap D_{v}$$ $$u^{\prime }\left( x\right) -v^{\prime }\left( x\right) $$ $$D_{u^{\prime }}\cap D_{v^{\prime }}$$
$$k\cdot u(x)\ avec\ k\in \mathbb{R}$$ $$D_{u}$$ $$k\cdot u^{\prime }(x)$$ $$D_{u^{\prime }}$$
$$u(x)\cdot v(x)$$ $$D_{u}\cap D_{v}$$ $$u^{\prime }(x)\cdot v(x)+u(x)\cdot v^{\prime }(x)$$ $$D_{u^{\prime }}\cap D_{v^{\prime }}$$
$$\frac{1}{u\left( x\right) } $$ $$D_{u}\diagdown \{ x|u(x)=0\} $$ $$-\frac{u^{\prime }\left( x\right) }{u^{2}\left( x\right) } $$ $$D_{u^{\prime }}\diagdown \{ x|u(x)=0\} $$
$$\frac{u\left( x\right) }{v\left( x\right) } $$ $$D_{v}\cap D_{u}\diagdown \{ x|u(x)=0\} $$ $$\frac{u^{\prime }\left( x\right) v\left( x\right) -u\left( x\right) v^{\prime }\left( x\right) }{v^{2}\left( x\right) } $$ $$D_{v^{\prime }}\cap D_{u^{\prime }}\diagdown \{ x|u(x)=0\} $$
$$v(u\left( x\right) )=\left( v\circ u\left( x\right) \right) $$ $$D_{u}\cap \left\{ x|v\left( x\right) \in D_{v}\right\} $$ $$v^{\prime }\left( u\left( x\right) \right) \cdot u^{\prime }\left( x\right) $$ $$D_{u^{\prime }}\cap \left\{ x|v\left( x\right) \in D_{v^{\prime }}\right\} $$
$$\left[ u\left( x\right) \right]^{n} $$ $$\mathbb{R}$$ $$n\left[ u\left( x\right) \right]^{n-1} \cdot u^{\prime }\left( x\right) $$ $$\mathbb{R}$$
$$\sqrt{u\left( x\right) } $$ $$\frac{1}{2\sqrt{u(x)} } \cdot u^{\prime }\left( x\right) $$
$$\sin \left[ u\left( x\right) \right] $$ $$\cos \left[ u\left( x\right) \right] \cdot u^{\prime }(x)$$
$$\cos \left[ u\left( x\right) \right] $$ $$-\sin \left[ u\left( x\right) \right] \cdot u^{\prime }(x)$$
$$\tan \left[ u(x)\right] $$ $$\frac{1}{\cos^{2} \left[ u\left( x\right) \right] } \cdot u^{\prime }\left( x\right) =1+\tan^{2} \left[ u\left( x\right) \right] \cdot u^{\prime }\left( x\right) $$

Tangente

$$t_{A}:y=f^{\prime }\left( a\right) \left( x-a\right) +f\left( a\right) $$